Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

نویسندگان

  • Lin Liu
  • Ning Xia
  • Huiping Liu
  • Xiaojing Kang
  • Xiaoshuan Liu
  • Chan Xue
  • Xiaoling He
چکیده

MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical syste...

متن کامل

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

Electrochemical assay of anti-tetanus toxoid monoclonal antibody by silver enhancement of gold nanoparticles at carbon nanotubes modified glassy carbon electrode

Tetanus is caused by the toxin secreted by Clostridium tetani. Due to the rapid infection with this bacterium, it is so important to investigate the tetanus immunity of people. Therefore, electrochemical biosensors, as one of the most effective tools in this regard, have demanded characteristics such as being fast, simple, cost-effective and portable. However, their detection sensitivity is not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014